Carnegie Mellon

Carnegie Mellon

Intro Data Structures Spring 2018

Course Information Lecture Schedule Calendar Assignments Java Resources

Lecture Schedule

Use any posted notes as support material for use in class to help you learn more effectively. You might want to print out or save a copy for yourself before class. Note that any handouts posted do NOT substitute for going to class. We will discuss much more than what you see in the slides below!

DATE	WEEK	LEC	TOPIC	FILES
1/16	1	1	Intro	<u>pdf</u>
1/17	1	2	Java Basics	<u>pdf</u> code
1/18	1	3	IO, Random, Loops, and Problem Solving	<u>pdf</u> code
1/23	2	4	Java Arrays and the Arrays class	<u>pdf</u> code
1/25	2	5	Classes, Objects and OOP	<u>pdf</u> <u>code</u>
1/30	3	6	File I/O, Exceptions, Array of Objects	<u>pdf</u> code
2/ 6	4	7	2d Arrays, ArrayLists, Efficiency (Big O)	<u>pdf</u> code
2/ 8	4	8	Inheritance	<u>pdf</u> code
2/13	5	9	Linked Lists (Intro)	<u>pdf</u> code
2/15	5	10	Implementing a generic Linked List class	<u>pdf</u> <u>code</u>
2/20	6	11	Implementing a generic Linked List class (part 2), Recursion	<u>pdf</u> code
2/27	7		Midterm review	
3/ 1	7		Midterm (14%)	
3/ 6	8	12	Interfaces (and JavaDoc)	<u>pdf</u> code
3/12-16	9		SPRING BREAK	
3/21	10	13	Iterators	<u>pdf</u> code
3/22	10	14	Stacks & Queues	<u>pdf</u>
3/27	11	15	Searching and Sorting	<u>pdf</u> code
3/29	11	16	Comparators, Intro to Trees, and Binary Search Trees	<u>pdf</u> <u>code</u>
4/3	12	17	Binary Search Tree Implementation	<u>pdf</u> code
4/10	13	18	BST (finalé), Priority Queues, and Heaps	pdf

4/19-21	14	Spring Carnival					
1,10 21			opring our mu				
4/24	15	20	Graphs	<u>pdf</u>			
4/26	15	21	Inheritance, revisited	pdf code			
5/3	16	22	Data Structures/Final Review	handout			

Mark Stehlik | School of Computer Science | Carnegie Mellon University

Carnegie Mellon University Home